Investigación de plantas medicinales con técnicas de inhibición enzimática

Armando Cáceres

Universidad de San Carlos de Guatemala y Laboratorio de Productos Naturales Farmaya

Il Congreso Centroamericano de Productos Naturales Medicinales Comayagua, 21 de junio de 2017

Búsqueda de actividad biológica por enzimología

- La búsqueda de blancos in vitro se ha convertido en una forma promisoria y económica de buscar actividad farmacológica interesante en productos naturales.
- Las plantas medicinales de uso tradicional son una fuente potencial de actividad biológica, que puede demostrarse por procedimientos de inhibición enzimática in vitro.
- La actividad de inhibición enzimática in vitro puede predecir con bastante certeza la actividad de un extracto vegetal, puede usarse para fraccionamiento bioguiado y servir de control de calidad de bioactividad en un producto terminado.
- La adaptación de los procesos de inhibición enzimática a modelos micrométricos hacen muy conveniente estos procedimientos para laboratorios con condiciones limitadas

Estrategias para combatir el síndrome metabólico (SM)

- Los desórdenes en el procesamiento de los CHO pueden causar severos problemas de salud, como la diabetes, obesidad, hiperuricemia y otros síntomas del SM.
- La pandemia de SM que afecta una buena parte de la población mundial obliga a buscar en la naturaleza medicamentos y alimentos que contribuyan a combatir este enorme flagelo.
- una de las estrategias es la búsqueda de especies vegetales que tengan actividad inhibidora de procesos enzimáticos asociados con el SM, particularmente el manejo de CHO (α-amilasa), glucosa (α-glucosidasa) y ácido úrico (xantina oxidasa).
- Otros procesos de inhibición enzimática de interés en la búsqueda de nuevos medicamentos son: acetilcolinesterasa (demencia), ureasa (infección) y tirosinasa (aclaramiento de la piel).

Características de la α-amilasa y su inhibición

- La α-amilasa es importante en la digestión de almidones y reduce los niveles de azúcar postprandial.
- Peso molecular 57.6 kDa, contiene Ca, 512 aminoácidos.
- La α-amilasa salivar y pancreática tienen similaridad del 97% en la secuencia de aminoácidos de la molécula general y 92% en los dominios catalíticos.

- Se han estudiado unas 800 plantas con actividad inhibidora de la α-amilasa.
- Las moléculas responsables son alcaloides, glicósidos, galactomananos, polisacáridos, esteroides, glucopéticos y terpenoides.
- Se han realizado muchos estudios de tamizaje de la actividad inhibitoria in vitro, pero pocos estudios han confirmado esta actividad en modelos experimentales y mucho menos en ensayos clínicos.

Ulbricht et al. J Diet Supp 2010; 7:78; Etxeberría et al. Expert Opin Ther Targets 2012; 16:269; Sales et al. J Phar Pharmaceut Sci 2012; 15:141.

Metodologías para demostrar la actividad α-amilasa

Sonkamble et al. Sci Res Rept 2014; 4:85; Gligorijevic et al. J Serb Chem Soc 2014; 79:411

Procedimiento estándar. Inhibición cinética cromogénica según Bernfeld (1955) de α-amilasa de páncreas de cerdo. Se han propuesto varias modificaciones para mejorar los procedimientos y lograr resultados confiables, reproducibles y robustos, usando longitud de onda de 405-540 nm y ecuaciones sencillas para calcular el efecto inhibitorio.

Bernfeld – Amylases alfa and beta. In: Colowick & Kaplan. Methods in Enzimology 1:149;

El-Bashbishy & Nahashwan. Toxicol Ind Health 2012; 18:42; Boaduo et al. Pharm Biol 2014; 52:756

Electroforesis capilar. Ha demostrado ser un método confiable para la detección primaria de la actividad, lográndose resultados equivalentes a los obtenidos por el método estándar de colorimetría

Inhibición de α-amilasa en especies vegetales

Procedencia de especies	Principales especies con actividad	Referencias
17 especies usadas en Alemania	Camellia sinensis, Rosarinus officinalis, Tamarindus indica, Vaccinium myrtillus	Funke & Melzing. Rev Bras Farmacog 2006; 16:1
11 especies usadas en medicina Ayurveda	Syzygium cumini, Psidium guajava	Karthic et al. Indian J Exp Biol 2008; 46:677
9 especies de uso popular en Líbano	Salvia acetabulosa, Marrubium radiatum	Loizzo et al. J Ethnopharmacol 2008; 119:109
26 especies de uso popular en Perú	Peumus boldus, Cinnamomum zylanicum, Uncaria tomentosa	Galvez et al. Biores Technol 2010; 101:4676
50 especies de uso popular en Jordania	Aesculus hippocastanum, Aloe vera, Geranium robertianum	Hamdan & Afifi. Saudi Pharmaceut J 2010; 18:91
Revisión 63 especies usadas en el mundo	Olea europea, Castanea sativa, Allium cepa, S. acetabulosa, Ocimum basilicum	Etxeberría et al. Expert Opin Ther Targets 2012; 16:269;
6 especies de uso popular en Sud Africa	Cymbopogon citratus, Cinnamomum cassia	Boaduo et al. Pharm Biol 2014; 52:756
18 especies de uso popular en Vietnam	Ficus racemosa, Kandelia candel	Binh et al. J Ethnopharmacol 2016; 186:189.

Especies con actividad inhibitoria de la α-amilasa

Especie	Principales resultados	Referencias
Phyllantus amarus	Actividad en el extracto hexánico (ácidos oleanólico y ursólico)	Hasenah et al. J Ethnopharmacol 2006; 107:449
Syzygium cumini	Actividad por ácido betulínico y 3,5,7,4'tetrahidroxi flavona	Karthic et al. Ind J Exp Biol 2008; 46:677
Psidium guajava	Actividad en el extracto butanólico (kaempferol, guayaverina, hiperina)	Wang et al. Food Chem 2010; 123:6.
Ocimum basilicum	La inhibición de α-amilasa guarda relación con los niveles de DPPH	El-Beshbishy & Bahashwan. Toxicol Ind Health 2012; 28:42
Telfairia occidentalis	Extracto etanólico reduce el Fe³+ e \checkmark α -amilasa; el escaldado \checkmark la actividad anti-enzimática	Oboh et al. Asian Pacif J Trrop Biomed 2012; 2012:733.
Carex baccans	Actividad por (+)-α-viniferina y smiglacidos A y B	Kumar et al. J Funct Foods 2013; 5:211.
Tinospora crispa	Actividad en borapetósido C, 4-hidroxibenzal- dehído y lisicamina	Hamid et al. J Funct Foods 2015; 16:74
Zea mays	Estigmas activos por mecanismo competitivo y no competitivo	Sabiu et al. J Ethnopharmacol 2016; 183:1

Características de la α-glucosidasa y su inhibición

- La α-glucosidasa es una exo enzima que hidroliza los CHO liberando α-glucosa de las terminales no reductoras.
- □ Inhibir α-glucosidasa ↓ la escisión de oligosacáridos, relegando su digestión al final del intestino, lo que hace mas lento el ↑ de glucosa en sangre.
- Los principales inhibidores son polifenoles (flavonoides) y alcaloides. Entre los más conocidos están acarbosa y miglitol, aislados de fuentes naturales.

- La inhibición de α-glucosidasa ha sido estudiada en unas 400 plantas medicinales y alimenticias.
- Se recomienda usar enzimas de origen animal para obtener datos de relevancia para humanos.
- Las moléculas responsables pertenecen a compuestos como glucomiméticos, chalconas, polifenoles (flavonoides y taninos), xantonas, ciclitoles, alcaloides, terpenoides, curcuminoides, antraquinonas, poliacetilenos, stilbenos y bromofenoles.

Gao et al. Food Chem 2008; 108:965; Tundis et al. Mini-Rev Med Chem 2010; 10:315; Kumar et al. Pharmacog Rev 2011; 5:19; Xiao et al. Crit Rev Foods Sci Nutr 2013, 53:818.; Wang et al. Adv Food Nutr Res 2013; 70:103; Ghani. Eur J Med Chem 2015; 103:133.

Metodologías para demostrar la actividad α-glucosidasa

- Tamizaje. La bioautografía por capa fina ha demostrado ser rápida, económica y específica para tamizar cualitativamente la actividad inhibitoria de α-glucosidasa.
 Gu et al. J Chromatog A 2015; 1411:116.
- Procedimiento estándar. Inhibición cinética cromogénica según Nishioka et al. (1998) de α-glucosidasa de intestino de rata. Varias modificaciones se han propuesto para mejorar los procedimientos y lograr resultados confiables y reproducibles; el porcentaje de conversión de sucrosa a glucosa se determina en el sobrenadante filtrado por un método comercial de glucosa oxidasa.
 Nishioka et al. J Nat Prod 1998; 61:1413;
- Bioensayo HPLC-NMP. Es un excelente método de tamizaje y cuantificación al acoplar el bioensayo colorimétrico a HPLC-SPE-NMR

Boaduo et al. Pharm Biol 2014; 52:756.

Inhibición de a-glucosidasa por especies vegetales

Procedencia	Principales especies con actividad	Referencias
Revisión de 51 especies evaluadas	Múltiples moléculas bioactivas se han aislado	Kumar et al. Pharmacog Rev 2011; 5:19
38 especies de uso popular en México	Hintonia latiflora, H. standleyana, Ligusticum porter, Brickellia cavanillesii	Mata et al. J Nat Prod 2013; 76:468.
6 especies de uso popular en Sud Africa	Cymbopogon citratus, Cinnamomum cassia	Boaduo et al. Pharm Biol 2014; 52:756.
Revisión de 13 familias químicas	Flavonoides, xantonas, alcaloides, curcuminoides presentan promisoria actividad	Ghani. Eur J Med Chem 2015; 103:133.
Revisión de 50 especies	Todas presentaron una CI_{50} < 500 µg/ml y actividad antioxidante	Shori. J Int Med 2015; 13:297
18 especies de uso en Indonesia y Japón	Mallotus japonicus, Quercus phillyraeoides	Indrianingsih et al. Procedia Env Sci 2015; 28:639.
18 especies de uso popular en Vietnam	Nepentes mirabilis, Phyllantus urinaria, Kandelia candel	Binh et al. J Ethnopharmacol 2016; 186:189.

Plantas con actividad inhibidora de α-glucosidasa

Especie	Principales resultados	Referencias
Lagerstroemia speciosa	De seis triterpenos, ácido corosólico demostró la mejor actividad inhibitoria	Hon et al. (2009) Phytother Res 2009; 23:614
Ocimum basilicum	El mecanismo de acción del extracto es por inhibición enzimática y antioxidante	El-Beshbishy & Bahashwan. Toxicol Indus Health 2012; 28:42
Malus x domestica	La quercetina aislada demostró actividad inhibitoria por bioensayo acoplado a HPLC	Schmidt et al. Food Chem 2012; 135:1692
Tinospora crispa	Se aisló borapeptósido C como inhibidor de α- glucosidasa y α-amilasa	Hamid et al. J Funct Foods 2015; 16:74
Embelia ribes	Se aisló embelamida y moléculas conocidas con actividad inhibitoria	Dang et al. Fitoterapia 2015; 100:201
Euphorbia hirta	Flavonoides prenilados son inhibidores por vía competitiva y no competitiva	Sheliya et al. J Ethnopharmacol 2015; 176:1
Centella asiatica	Actividad antioxidante e inhibidora de α -glucosidasa	Dewi & Maryani. Procedia Chem 2015; 17:147.
Zea mays (estigmas)	Mecanismo competitivo de inhibición enzimática	Sabiu et al. J Ethnopharmacol 2016; 183:1.
Morella rubra	Acción por flavonoides del fruto	Yan et al. Molecules 2016; 21:1148

Características de xantina oxidasa e inhibición

- □ La catálisis de la xantina conduce a la acumulación de ácido úrico [xantina + O₂ + H₂O → urato + H₂O₂]
- Se encuentra presente en el hígado e intestino de mamíferos.
- Su modo de acción se relaciona con los radicales superóxido
- XO también participa en otros procesos metabólicos y patológicos (CV, inflamación).
- El alopurinol se prescribe en el tratamiento de gota, por ser un inhibidor competitivo de la XO.

- La actividad IXO ha sido estudiada en unas 300 plantas de uso en reumatismo y gota.
- Las moléculas responsables son flavonoides (mircetina, baicaleina, quercetina, kaempferol, crisina, galangina, scutelareina, acaceina, luteolina, apigenina, crisoeriol), chalconas y proantocianidinas.
- Algunos flavonoides (genisteína, apigenina, quercetina, rutina) no poseen actividad IXO in vitro, pero si potente actividad in vivo.

Ling & Bochu. Pharmazie 2014; 69:243; Kostić et al. J Chem 2015:294858; Hofmann et al. Bioorg Med Chem 2016; 24:578.

Metodologías para demostrar actividad IXO

Tamizaje. La bioautografía por CCF ha demostrado ser rápida, económica y específica para tamizar cualitativamente la actividad IXO, detectada por la reacción de radicales superóxido con nitroazul de tetrazolio.
Marston et al. Phytochem Anal 2002; 13:51; Ramallo et al.

Marston et al. Phytochem Anal 2002; 13:51; Ramallo et al. Phytochem Anal 2006; 17:15.; Dewanjee et al. J Pharm Anal 2015

Procedimiento estándar. Inhibición cinética cromogénica según Kong et al. (2000) y Sweeney et al. (2001) de XO de leche de vaca (EC 1.1.3.22) evaluado espectrofotométricamente a 295 nm.

Kong et al. J Ethnopharmacol 2000; 73:199; Sweeney et al. J Ethnopharmacol 2001; 75:273.

Biosensor amperométrico. Es un método simple y sensible de inmobilización de xantina oxidasa en la superficie de azul de Prusia y determinación amperométrica y voltamétrica.

Tamizaje de especies vegetales con actividad IXO

Procedencia	Principales especies con actividad (CI ₅₀)	Referencias
26 especies de uso en Norteamérica	Larix latricina, Achillea millefolium, P. balsamifera	Owen & Johns. J Ethnopharmacol 1999; 64:149
122 especies de uso en China	Cinnamomum cassia, Chrysanthemum indicum, Lycopus europaeus (18-26 µg/mL)	Kong et al. J Ethnopharmacol 2000; 73:199
5 especies de Lychnophora de Brasil	L. trichiocarpha y L. ericopides (6-8 μg/mL)	Ferraz Filha et al. J Ethnopharmacol 2006; 107:79
27 especies de uso en la República Checa	Populus nigra, Betula pendula (8-25 μg/mL)	Havlik et al. J Ethnopharmacol 2010; 132:461
3 especies de uso tradicional en Taiwan	Euonymus laxiflorus, Rubia lanceolata, Gardenia jasminoides (in vitro e in vivo	Liu et al. Food Chem Toxicol 2014; 70:179
10 Leguminosas de Filipinas	Caesalpinia pulcherrima y Saraca thaipingensis	Argulla & Chichioco-Hernández. Asian Pac J Trop Dis 2015; 4:438.
13 especies de uso en Marruecos	Extracto acuoso de <i>Mentha spicata</i> y <i>Melissa officinalis</i>	El Harrad & Amine. Enz Microb Technol 2016;85:57

Confirmación de especies vegetales con actividad IXO

Especie	Principales resultados	Referencias
Lagerstroemia speciosa (Hj)	Se aislaron como activos la dilactona del ácido valoneico (superior a allopurinol) y ácido elágico	Unno et al. J Ethnopharmacol 2004; 93:391.
Cinnamomum	\uparrow de xantina oxidasa (124%) y \downarrow (-44%) de xantina dehidrogenasa	Azab et al. Ecotoxicol Environ Safety 2011; 74:2324.
cassia (Cz)	Extracto metanólico inhibe XO, se aislaron como activos glicósidos fenólicos (cinnacasolidos A-C)	Ngoc et al. Bioorg Med Chem Lett 2012; 22:4625.
Hibiscus sabdariffa (Cx)	El extracto reduce ácido úrico en modelos animales por 1 de uricasa, pero no por inhibición de XO	Kuo et al. J Funct Foods 2012; 4:375
Jatropha isabellei (Rz)	Inhibición de XO in vitro, analgesia y antiinflamatoria en un modelo de gota inducido en rata	Silva et al. J Ethnopharmacol 2013; 145:205.
Zingiber officinale (Rz)	Los extractos y compuestos (6 gingerol, 6-shogaol, 6-paradol) inhibieron 85% de XO	Nile & Park. Ind Crops Prod 2015; 70:238.
Tetrapleura tetraptera (Fr)	Actividad atribuida a compuestos fenólicos y flavonoides	Irondi et al. Food Sci Hum Well 2016; 5:17.

Acetilcolina, significado, inhibición y detección

- Acetilcolina (AC), neurotransmisor de la actividad sináptica.
- Inhibida por acetilcolinesterasa (ACE), enzima de los tejidos nerviosos y los eritrocitos que hidrolizar a la AC.
- Demencia es la pérdida progresiva de memoria por disminución de los niveles de AC y aumento de la ACE.
- Se busca actividad inhibitoria de ACE para aumento de AC

Ling & Bochu. Pharmazie 2014; 69:243; Kostić et al. J Chem 2015; 2015:294858; Hofmann et al. Bioorg Med Chem 2016; 24:578. Tamizaje. Por bioautografía en TLC y Fast Blue B.

Yang et al. J Sep Sci 2009; 32:3257.

Cuantificación. Método microcolorimétrico según Ellmann et al. (1961)

Adsersen et al. J Ethnopharmacol 2006; 104:418

Confirmación. Modelo in vivo por cuantificación de ACE en cerebro de ratón comparado con animales control

Konrath et al. J Ethnopharmacol 2012; 139:58

Tamizaje de especies vegetales con actividad IACE

Procedencia	Principales especies con actividad (CI ₅₀)	Referencias
7 especies de uso en Corea	Acorus calamus, Epimedium koreanum (200 μg/mL)	Oh et al. Phytomedicine 2004; 11:544.
40 especies de uso en Colombia	Extractos de Solanaceae (S. deflexiflorum, S. leucocarpum, Witheringia coccoloboides)	Mosquera et al. Scientia Tech 2004; 10(26):155.
11 especies de uso en Dinamarca	Corysalis spp, Lavandula angustifolia, Menha spicata, Rosmarinus officinalis	Adsersen et al. J Ethnopharmcol 2006; 104:418.
5 especies de uso en Portugal	R. oficinalis, particularmente el aceite esencial	Mata et al. Food Chem 2007; 103:778.
73 especies de uso en Argentina	Achyrocline tomentosa, Eupatorium viscidum, Ruprechtia apetala	Carpinella et al. Phytother Res 2010; 24:259.
40 especies de uso en Irán	Peganum harmala, responsabilizándose a la harmalina y harmina (41-95 μg/mL)	Adhami et al. Phytother Res 2011; 25:1148
18 especies de uso en Brasil	Ipomoea asarifolia, Jatropha curcas, J. gossypifolia, Kalanchoe brasilensis y Senna alata (0.12-016 mg/mL)	Feitosa et al. Braz J Biol 2011; 71:783.

Confirmación de especies vegetales con actividad IACE

Especie	Principales resultados (CI ₅₀)	Referencias
Camellia sinensis	Actividad IACE e inhibitori de butirilcolinesterasa (IBCE) (0.03-0.05 mg/mL), prevención de β -amiloidosis	Okello et al. Phytother Res 2004; 18:624.
Eucalyptus globulus	Aceite esencial comercial fue efectivo, pero sus constituyentes (1,8-cineol y limoneno) no fueron activos	Aazza et al. Molecules 2011; 16:7672.
Cichorium intybus	Actividad IACE in vitro, aislamiento de lactonas sesquiterpénicas (8-deoxilactucina y lactucopicrina)	Rollinger et al. Corr Drug Disc Technol 2005; 2:185.
Zephyranthes grandiflora	Se identificaron siete alcaloides de las Amaryllidaceae con actividad IACE e IBCE (39 $\mu g/mL$)	Cahliková et al. Braz J Pharmacog 2011; 21:575
Mentha spp.	M. piperita, M. spicata y M. pulegium y compuestos (ácido rosmarínico, eriocitrina y eriodictiol) son IACE sin modificación por la acción gastrointestinal	Dinis et al. Eur J Med Plants 2013; 3:381.
Rauvolfia reflexa	Actividad IACE e IBCE (0.05 mg/mL), prevención de β -amiloidosis	Fadaeinasab et al. Molecules 2013; 18:3779.

Ureasa, significado, inhibición y detección

- La urea es producto de catabolismo proteico; la ureasa contiene Ni y se obtiene de semillas de Canavallia.
- Los principales inhibidores son terpenoides, alcaloides y polifenoles (flavonoides, cumarinas)
- Su principal aplicación es inhibiendo la invasión de las mucosas gástricas (Helicobacter pylori) y urinaria (Proteus).
- No genera resistencia bacteriana.

Amtul et al. Curr Med Chem 2002; 9:1323; Kosikowska & Berlicki. Expert Opin Ther Patents 2011; 21:945; Hassan & Zemlićka. Arch Pharm Chem Lif Sci 2016; 349:1.

Tamizaje. Por bioautografía en TLC desarrollado con urea.

Shi et al. Pharm Biol 2011; 49:752.

Cuantificación. Método colorimétrico según Weatherburn (1967) y Tanaka (2003)

Olech et al. Food Chem 2014; 145:154.

Confirmación. Actividad antiureasa en cultivos de H. pylori

Adeniyi & Anyiam. Phytother Res 2004; 18:358.

Tamizaje de especies vegetales con actividad antiureasa

Procedencia	Principales especies con actividad (CI ₅₀)	Referencias
14 especies de uso en China	Magnolia officinalis y Cassia obtusifolia (6-12 μg/mL)	Shi et al. Pharm Biol 2011; 49:752.
5 especies de uso en Pakistan	Acacia nilotica, Calotropis procera, Adhatoda vasica, Fagoniaar abica, Casuarina equisetifolia	Amin et al. Molecules 2013; 18:2135.
3 especies de uso en Rumania	Polifenoles de <i>Geranium robertianum, Helleborus purpurascens, Hyssopos officinale</i>	Paun et al. J Enzyme Inhib Med Chem 2014; 29:28.
6 especies de Allium y Brassica	Los seis jugos inhibieron la ureasa, actividad destruida por el cocimiento	Olech et al. Food Chem 2014; 145:154.
15 especies de uso en India	Acacia nilotica, Emplica officinalis, Psidium guajava, Rosa indica, Terminalia chebula	Bai et al. Pharm Biol 2014; 53:326.
42 especies de uso en República Checa	Seis especies del género <i>Potentilla</i> con presencia de flavonoides y catequina	Hřibová et al. Nat Prod Res 2014; 28:868
15 especies de uso en Irán	Ginkgo biloba, Rhus coriaria, Matricaria inodora	Mahernia et al. Iranian J Pharm Res 2015; 14:943.

Confirmación de especies vegetales antiureasa

Especie	Principales resultados (CI ₅₀)	Referencias
Camellia sinensis	Extractos fermentados y no fermentados inhiben la ureasa por su contenido de polifenoles y catequina	Shoae Hassani er al. Indian J Med Microbiol 2009; 27:30
Hypericum oblongifolium	Moléculas activas: 3,4,5,trihidroxixantona y 1,3,7-trihidroxixantona	Arfan et al. J Enz Inhib Med Chem 2010; 25:296
Corydalis govaniana	Alcaloides (caseadina, caseamina, protopina) y govaniadina son potentes inhibidores (20 μ M)	Shestha et al. Phytochem Lett 2013; 6:228.
Virola betonicifolia	3-metoxidalbergione fue la molécula responsable de la actividad inhibidora de ureasa	Muhammed et al. Molecules 2014; 19:16770.
Pistacia atlántica	Extractos y fracciones inhiben ureasa (19 µg/mL), moléculas activas: transilitgina y dihiidroluteolina	Uddin et al. Nat Prod Res 2015;1062378
Berberis jaeschkeana	Los extractos y aislamientos (berberinol) presentaron actividad inhibidora de ureasa y antifúngica	Alamzeb et al. Nat Prod Res 2015:1000321
Andrographis paniculata	Diterpenoides del labdano demostraron actividad inhibidora de <i>H. pylori</i> y antiureasa	Shaikh et al. Phytother Res 2016; 30:412.

Tirosinasa, significado, inhibición y detección

- La tirosinasa es clave en la biosíntesis de melanina, que es el principal pigmento de la piel.
- Su inhibición tiene importancia clínica y cosmética en las condiciones dérmicas de hiperpigmentación.
- Los principales compuestos activos vegetales son polifenoles, flavonoides (liquiritina, glabridina), glicósidos (arbutina) y sesquiterpenos (bisabolol)

Leyden et al. J Eur Acad Dermatol Venereol 2011; 25:1140; Fisk et al. J Am Acad Dermatol 2013;

■ Tamizaje. Bioautografía por TLC, control de ácido kojico

Momtaz et al. J Erhnopharmacol 2008; 119:507.

Cuantificación. Método colorimétrico, lectura a 492 nm, control de ácido kójico

Chiari ert al. Food Chem 2010; 120:10

Confirmación. Mancha en agar y ensayo fluorescente usando cultivo de células de melanoma esferoidal 3D.

> Duarte et al. Braz J Micro 2012;:21; Lee et al. Biol Pharm Bull 2015; 38:1542.

Tamizaje de especies con actividad antitirosinasa

Procedencia	Principales especies con actividad (CI ₅₀)	Referencias
100 especies de diverso origen usadas en Corea	Chaenomeles speciosa, Drypteris crassirhizoma, Gastrodia ellata, Glycyrrhiza glabra, Morus alba, Myristica fragrans, Rheum palmatum	Lee et al. Int J Cosm Sci 1997; 19:291.
19 especies nativas del Amazonas	El extracto orgánico de Ruprechtia sp. Y Rapanea parviflora (33-64 mg/mL)	Macrini et al. Braz J Pharm Sci 2009; 45:715.
91 especies nativas de Argentina	Dalea elegans, Lepechinia floribunda, Thalictrum decipiens (1-10 μg/mL)	Chiari et al. Food Chem 2010; 120:10.
15 especies de uso en Bangladesh	Swertia chirata, Piper nigrum, Glycyrrhiza glabra, Piper longum, Ocimum americanum	Khanom et al. Biosci Biotechnol Biochem 2000; 64:1967
5 especies de uso en India	El extracto acuoso de Asparagus racemosa mostró actividad antioxidante y antiureasa	Narayanaswamy et al. Int J PharmTech Res 2011; 3:1107
10 especies de Piper de Guatemala	Extractos de <i>P. variabile, P. umbellatum</i> y <i>P. jacquemontianum</i> (2-4 µg/mL)	Almeda et al. Int J Phytocos Nat Ing 2015; 2:6

Confirmación de especies vegetales antitirosinas

Especie	Principales resultados (CI ₅₀)	Referencias
Piper longum	Demostración in vitro e in vivo de actividad antitirosinasa de piperlonguminina	Kim et al. Pigemnt Cel Res 205; 19:90.
Vitex negundo	Ocho lignanos mostraron actividad antitirosinasa, principalmente (+)-lioniresinol (3.21 μ M)	Azhar-ul-Haq et al. Phytomedicine 2006; 13:255.
Muntingia calabura	Extracto hidroetanólico con actividad antitirosinasa y antioxidante; se atribuye a la presencia de polifenoles	Balakrishnan et al. Int J Pharma Bio Sci 2011; 2:B295
Michelia alba	Se aisló (-)-N-formilanonaina por inhibición de tirosinasa fúngica y actividad antioxidante	Wang et al. Bioorg Med Chem 2010; 18:5241
Distylium racemosum	Moléculas activas: flavonoides y derivados de catequina y ácido gálico	Ko et al. Phytother Res 2011; 25:1451.
Tabebuia avellanedae	La molécula responsable de la inhibición de melanogénesis es β-lapachona	Kim et al. Arch Dermatol Res 2015; 307:229
Camellia sinensis	Varias proantocianidinas demostraron potente actividad antitirosinasa	Wei-Song et al. Int J Food Prop 2016; 20:1348